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Abstract

Increasingly memory deficits are recognized in Parkinson’s disease (PD). In PD, the dopamine-producing cells of the
substantia nigra (SN) are significantly degenerated whereas those in the ventral tegmental area (VTA) are relatively spared.
Dopamine-replacement medication improves cognitive processes that implicate the SN-innervated dorsal striatum but is
thought to impair those that depend upon the VTA-supplied ventral striatum, limbic and prefrontal cortices. Our aim was to
examine memory encoding and retrieval in PD and how they are affected by dopamine replacement. Twenty-nine PD
patients performed the Rey Auditory Verbal Learning Test (RAVLT) and a non-verbal analogue, the Aggie Figures Learning
Test (AFLT), both on and off dopaminergic medications. Twenty-seven, age-matched controls also performed these memory
tests twice and their data were analyzed to correspond to the ON-OFF order of the PD patients to whom they were
matched. We contrasted measures that emphasized with those that accentuated retrieval and investigated the effect of PD
and dopamine-replacement on these processes separately. For PD patients relative to controls, encoding performance was
normal in the off state and was impaired on dopaminergic medication. Retrieval was impaired off medication and improved
by dopamine repletion. This pattern of findings suggests that VTA-innervated brain regions such as ventral striatum, limbic
and prefrontal cortices are implicated in encoding, whereas the SN-supplied dorsal striatum mediates retrieval.
Understanding this pattern of spared functions and deficits in PD, and the effect of dopamine replacement on these
distinct memory processes, should prompt closer scrutiny of patients’ cognitive complaints to inform titration of dopamine
replacement dosages along with motor symptoms.
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Introduction

Parkinson’s disease (PD) is a neurodegenerative illness charac-

terized by degeneration of the dopamine-producing cells of the

substantia nigra (SN) [1]. The SN innervates the dorsal striatum,

defined as the bulk of the caudate nuclei and putamen. The

resulting dopamine depletion of the dorsal striatum in PD

produces tremor, bradykinesia, and rigidity. Dopaminergic

medications such as L-3,4-dihydroxyphenylalanine (L-Dopa) or

dopamine receptor agonists improve these motor symptoms that

typify PD [2].

Cognitive impairments are increasingly described in PD [3].

The nature and etiology of these deficits, as well as the effect of

dopaminergic medications on these processes, however, are less

clear [4–6]. Despite initial assumptions and occasional contradic-

tory findings [7,8], memory impairments are recognized in PD [9–

12]. Successful remembering depends upon effectively a) acquiring

or encoding new information and b) retrieving or accessing that

information at a later time. These processes are dissociable by

experimental manipulations [13–15]. During encoding, increased

activity in medial temporal structures (e.g., hippocampus,

perirhinal cortex) and decreased activity in regions of the default

mode network (e.g, inferior parietal cortex, precuneus) have been

shown [16–20]. In contrast, retrieval has been associated with

increased activity in posterior parietal, anterior prefrontal, and

posteromedial cortices [16,21–23]. Inconsistencies in the literature

with respect to memory performance in PD patients could owe to

the fact that most studies examine only the combined effects of

encoding and retrieval processes, in unknown proportions. Only

one previous study aimed to distinguish these separable processes

in PD [11]. Contradictory findings in PD possibly also result from

comparing studies in which PD patients are tested off relative to on

dopaminergic medication. Few studies have investigated the effect

of dopamine replacement on memory in PD [10,24] and none

have systematically examined the effect of medication on encoding

and retrieval processes separately. Hence, whether encoding and

subsequent retrieval are differentially affected by PD and

dopamine replacement remains unclear. Finally, the possibility

that memory for verbal versus non-verbal materials differs in PD

has not to this point been explored. Consequently, a comprehen-

sive study, where the same group of PD patients is investigated, on
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and off dopaminergic therapy, with both verbal and non-verbal

materials, using tests in which encoding and retrieval can be

relatively controlled and distinguished is needed.

Investigating the Effect of PD and Dopamine
Replacement on Encoding Rate and Retrieval
The aim of the current study was to clarify memory

performance in PD patients. Specifically, our aim was to

investigate encoding and retrieval in PD patients, on and off

dopamine replacement, relative to age-matched controls, using

both verbal and non-verbal materials.

Methods

Participants
Twenty-nine PD patients with an average Hoen and Yahr

staging of 1.96 (SEM 0.11) participated in the study. All patients

were evaluated in a general neurology clinic, were diagnosed by a

licensed neurologist, and met a) the core assessment program for

surgical interventional therapy criteria for the diagnosis of

idiopathic PD [25] and b) the UK Brain Bank criteria for the

diagnosis of Parkinson’s disease [26]. Twenty-seven age- and

education-matched healthy control participants were also included

in the current experiment. Patients and controls known for

dementia or mild cognitive impairment, abusing alcohol, pre-

scription or street drugs, or taking medications such as Donepezil,

Rivastigmine, Galantamine, or Memantine were excluded from

participation. Further, if patients described a change in function

related to cognitive symptoms, performed below 100 on the Adult

National Reading Test (ANART), or could not successfully draw a

clock or copy a cube, they were excluded from the study. This

study was approved by the Ethics Review Board of the Sudbury

Regional Hospital and all participants provided informed written

consent that was approved by the review board prior to testing

according to the Declaration of Helsinki [27].

Severity and presence of disease were assessed for all patients

both on and off dopaminergic medication using the motor sub-

scale of the Unified Parkinson’s Disease Rating Scale (UPDRS) by

the senior author, a movement disorders neurologist. A screening

neurological examination was performed on control participants

and none manifested signs of PD. All patients and no controls were

treated with L-Dopa. Eleven PD patients were also treated with

pramipexole, a dopamine agonist medication. This medication

constituted adjunctive therapy only, on average accounting for

25% of the daily L-Dopa medication equivalent. Mean group

demographic information, screening affective and cognitive

measures, UPDRS scores on and off medication, as well as daily

doses of dopamine-replacement therapy in L-Dopa equivalents are

presented in Table 1. Calculation of daily L-Dopa equivalent dose

for each patient was based on theoretical equivalence to L-Dopa

[28] as follows: L-Dopa dose + L-Dopa dose 6 1/3 if on

entacapone + bromocriptine (mg) 6 10 + cabergoline or prami-

pexole (mg) 667 + ropinirole (mg) 6 20 + pergolide

(mg) 6100 + apomorphine (mg) 6 8.

There were no statistically significant demographic differences

between PD patients and controls and all participants performed

normally on screening cognitive measures. Patients scored

significantly higher on the Beck Depression Inventory–II (BDI-

II) than controls but no participants were severely or even

moderately depressed. We used a cut-off of 28/63 on the BDI-II as

an a priori exclusion criterion but no patients approached this cut-

off. Further, there were no differences in terms of the depressive

symptoms endorsed by PD patients or controls between the on and

off sessions.

Table 1. Demographics and clinical information, as well as
screening cognitive and affective measures for PD patients
and controls.

PD Control

N 29 27

Age 63.79 (1.61) 63.78 (1.43)

Education 13.72 (0.69) 12.67 (0.59)

Years Disease 5.02 (0.99) –

LED (mg) 520 (67.32) –

DA (n) 11 –

UPDRS ON 17.19 (1.43) –

UPDRS OFF 21.76 (1.73) –

BDI-II ON 7.87 (0.99) 4.19 (0.76)

BDI-II OFF 9.80 (1.33) 4.09 (0.71)

Apathy ON 11.76 (1.31) 8.89 (1.03)

Apathy OFF 11.70 (1.26) 8.67 (1.10)

ANART IQ 120.32 (1.47) 121.40 (1.32)

F-words 13.52 (1.09) 14.22 (1.12)

A-words 10.86 (0.63) 11.20 (0.54)

S-words 13.98 (0.74) 15.30 (0.63)

Animals 18.40 (0.70) 20.94 (0.78)

Clock 3 (0) 3 (0)

Cube 1 (0) 1 (0)

WCST Categories 3.76 (0.30) 4.39 (0.27)

WCST Perseverative Errors 17.81 (1.76) 16.78 (1.47)

WCST Non-perseverative
Errors

21.03 (2.52) 15.63 (1.93)

Screening affective and cognitive measures are presented as group means
(SEM). Control participants did NOT receive dopaminergic therapy during any
session of the experiment. Their data are presented here to correspond to the
ON-OFF order of the PD patient to whom they were matched.
Education = years of education; Years Disease = years since diagnosis of
PD; LED = daily L-DOPA equivalent dose in mg; DA = number of patients
taking dopamine agonists; UPDRS ON = Unified Parkinson’s Disease Rating
Scale motor score on medication; UPDRS OFF = Unified Parkinson’s Disease
Rating Scale motor score off medication; BDI-II ON = Beck Depression
Inventory II score measured for PD patients while they were treated with their
usual dopamine-replacement therapy and for control participants during the
session that corresponded to the ON session of the PD patient to whom they
were matched; BDI-II OFF = Beck Depression Inventory II score measured for
PD patients while they abstained from their usual dopamine-replacement
therapy and for control participants during the session that corresponded to
the OFF session of the PD patient to whom they were matched; Apathy ON =
Apathy Evaluation Scale score measured during the ON session; Apathy OFF
= Apathy Evaluation Scale score measured during the OFF session; ANART IQ
= National Adult Reading Test [95] IQ estimation tested in the ON session; F-
words = average number of words beginning with the letter F generated in
one minute in ON and OFF sessions; A-words = average number of words
beginning with the letter A generated in one minute in ON and OFF sessions; S-
words = average number of words beginning with the letter S generated in
one minute in ON and OFF sessions; Animals = average number of animal
names generated in one minute in ON and OFF sessions; Clock = score on
clock drawing component of Montreal Cognitive Assessment (MOCA) tested in
the ON session; Cube = score on cube copying component of MOCA tested in
the ON session; WCST Categories = average number of correct
categorizations on the Wisconsin Card Sorting Test (WCST) in ON and OFF
sessions; WCST Perseverative Errors = average number of perseverative
errors in the WCST in ON and OFF sessions;WCST Non-perseverative Errors
= average number of non-perseverative errors in the WCST in ON and OFF
sessions.
doi:10.1371/journal.pone.0074044.t001

Dopamine and Cognition in Parkinson’s Disease
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Apparatus
The experiment was conducted on a 12.1 inch widescreen

laptop (Lenovo ThinkPad 6201) running at a resolution of

12806800 on the Windows 7 operating system. The screen was

angled for optimal viewing at a distance of approximately 50 cm.

Experimental Design and Procedure
On consecutive days, participants performed two versions of the

verbal and non-verbal memory tests described below. All patients

performed a version of each of these tests once on and once off

dopamine-replacement therapy. The ON-OFF order was coun-

terbalanced across participants, with half of the patients perform-

ing the task first ON medication and the other half performing the

first session OFF treatment. During ON testing sessions, PD

patients took their dopamine-replacement medication as pre-

scribed by their treating neurologist. During OFF testing sessions,

PD patients abstained from dopamine-replacement therapy for a

minimum of 12 and a maximum of 18 hours prior to testing.

Control participants were also tested on these memory measures

on consecutive days. Although control participants did not take

dopamine-replacement medication during either testing session,

their data were analyzed to parallel the ON-OFF order of the PD

patient to whom they were matched based on age. Controls were

matched to PD patients, and hence their ON-OFF orders were

determined, prior to testing. Therefore, we controlled for order,

fatigue, and possible practice effects.

1. Rey Auditory Verbal Learning Test (RAVLT): Verbal

Test of Explicit Memory. In each session, a version of the

main List A, consisting of 15 words, was presented to participants.

Words appeared one at a time in the centre of the computer screen

at a rate of one word per second and participants were instructed

to commit these words to memory. Immediately following the

study phase of this main list, participants were asked to write down

as many words as they could recall. This study-immediate recall

procedure for List A was repeated three times in each session.

A version of List B, also consisting of 15 words, was then

presented once with presentation parameters identical to those

described for List A. Participants immediately recalled as many

words as they could from List B, which served as an interference

event. Next, they were asked to recall as many words as they could

from the main List A. After a 30-minute delay, participants were

asked to recall as many words as they could from Lists A and B

without any further study presentations.

A recognition memory test followed. During this test, all of the

words from Lists A and B were presented, one at a time, mixed

randomly among 22 new words, in the centre of the computer

screen. Participants indicated whether the word had been

presented in the previous study phases or whether it was new,

by pressing the ‘z’ key for ‘old’ and the ‘/’ key for ‘new’

judgements. For words judged as ‘old’, participants were

additionally prompted to indicate with a key press whether the

word appeared previously in List A (i.e., ‘1’), List B (i.e., ‘2’), or

whether they were unsure of the source (i.e., ‘3’).

Appendix S1A provides Versions 1 and 2 of Lists A and B and

the new words included in the recognition tests. For all

participants, Version 1 of all lists was employed in Session 1 and

Version 2 was used in Session 2, regardless of ON or OFF

medication status. In this way, for half of the patients, Version 1

was tested on medication whereas for the remaining patients,

Version 2 was tested on medication. Control participants’ data

were analyzed to correspond to the data of the PD patient to

whom they were matched. In this way, we controlled for order,

list, fatigue, and practice effects.

2. Aggie Figures Learning Test (AFLT): Non-verbal Test of

Explicit Memory. The AFLT was entirely analogous to the

RAVLT save that abstract symbols were employed rather than

words. In brief, these abstract symbols were presented one at a

time in the centre of the computer screen for one second each.

During the recall sessions, participants were asked to draw the

abstract designs from memory, on blank sheets of paper. Further,

five study-immediate recall trials were performed rather than three

to compensate for increased difficulty in learning abstract figures

relative to common words.

Appendix S1B provides examples of designs used in the AFLT.

3. Measures of Encoding and Retrieval from Long-term

Memory. The difference in the number of items recalled from

the first to the last study-immediate recall trials in both the

RAVLT and the AFLT provided a measure of learning rate or

encoding [29,30]. We predicted, as have others, that performance

on study-immediate recall trials would be influenced, in addition

to encoding and retrieval processes, by immediate or working

memory [31,32], all in unknown proportions. Subtracting

performance on the first study-immediate recall trial from the

last, permitted measurement of the proficiency and efficiency of

learning, over repeated presentations, controlling for the effects of

immediate memory and recall abilities [31–33]. The factor that is

predicted to systematically increase across study-immediate recall

trials is the extent to which items are transferred to more long-term

memory (i.e., encoding).

In contrast, the number of items recalled on the RAVLT and

AFLT from Lists A and B following a delay, is thought to

preferentially index retrieval processes [34]. Recognition of studied

words and abstract designs from among new items, after a delay,

also was intended to stress retrieval processes [35]. Sensitivity of

recognition memory for List A and B items was estimated using d’

scores [36].

Results

Below, we report the analyses on the data for the RAVLT and

AFLT, contrasting measures that we intended to index encoding

versus to stress retrieval. For the statistical analyses, raw scores

were converted to Z-scores to avoid differences in the scale of

performance across the RAVLT and AFLT. For between-subject

analyses, raw scores were normalized within session, across groups.

For within-subject analyses, raw scores were normalized relative to

performance of each group, across sessions. Analyses performed

with raw scores produced identical patterns of results. Group

averages of raw scores reflecting learning, recall, and recognition

performance, and statistical outcomes of contrasts on these scores,

are presented in Figure 1, Panels A to C.

Encoding Measure
Learning scores were obtained separately for the RAVLT and

AFLT, as well as for each group (PD vs. Control), in each session

(ON vs. OFF). Learning scores were calculated as number of

correctly recalled items for main Lists A on the final study-

immediate recall trial (i.e., Trial 3 for the RAVLT and Trial 5 for

the AFLT) minus number of correctly recalled items on study-

immediate recall Trial 1. These scores are presented for both

groups, in each session in Table 2. Figure 1A presents the learning

scores for PD patients and controls, on the RAVLT and AFLT

combined, in the on and off sessions.

Retrieval Measures
The number of words and abstract designs recalled in the

RAVLT and the AFLT respectively from the main Lists A and the

Dopamine and Cognition in Parkinson’s Disease
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interference Lists B, following a 30-minute delay, for PD patients

and controls, in both sessions, appear in Table 3. Figure 1B

presents the average number of items recalled after delay on the

RAVLT and AFLT combined, in the on and off sessions, for both

PD patients and controls.

Sensitivity in distinguishing studied words and abstract designs

from new items, estimated by d’ scores [36] for List A and B items,

on the RAVLT and the AFLT, for PD patients and controls in

both sessions, are presented in Table 3. Figure 1C compares mean

d’ scores across sessions on the RAVLT and AFLT combined, for

PD patients and controls.

Encoding and Retrieval Between Groups
1. Encoding Measure. We performed 262 ANOVAs on

normalized learning scores, with Group (PD vs. Control) as the

between-subject factor and Test type (Verbal/RAVLT vs. Non-

verbal/AFLT) as the within-subject variable, for ON and OFF

sessions separately. Although, control participants did not take

dopaminergic medication at any point in this study, their data

were analyzed to parallel the ON and OFF session of the PD

patient to whom they were matched. We found significantly

poorer learning for PD patients relative to controls in the ON

session, F (1, 54) = 4.60, MSe =1.09, p,0.05 but no significant

group difference in the OFF session, F,1. All other main effects

and interactions were not significant, all F,1.

2. Retrieval Measures: Recall. We performed 262 ANO-

VAs on normalized recall scores, with Group (PD vs. Control) as

the between-subject factor and Test type (Verbal/RAVLT vs.

Non-verbal/AFLT) as the within-subject variable, for ON and

OFF sessions separately. The main effect of Group was significant

in the OFF session only, F (1, 54) = 6.23, MSe =1.30, p,0.025,

reflecting poorer recall for PD patients compared to controls. The

effect of Group was not significant in the ON session, F (1, 54)

= 2.72, MSe =1.33, p=0.105. In both sessions, the main effect of

Test type, F,1, and the Group x Test type interactions, F (1, 54)

= 1.16, MSe =0.58, p.0.250 and F (1, 54) = 1.36, MSe =1.36,

p.0.225, for ON and OFF respectively, were also not significant.

3. Retrieval Measures: Recognition. Analogous 262

ANOVAs, with Group (PD vs. Control) as the between-subject

factor and Test type (Verbal/RAVLT vs. Non-verbal/AFLT) as

the within-subject variable, for ON and OFF sessions separately,

were performed on normalized recognition memory scores. The

main effect of Group was significant in the OFF session only, F (1,

54) = 6.23, MSe =12.71, p,0.001, reflecting poorer recognition

memory for PD patients compared to controls. The main effect of

Group in the ON session was marginally significant, F (1, 54)

= 3.31, MSe =1.24, p=0.075, suggesting a trend toward poorer

recognition memory performance for PD patients compared to

Figure 1. Performance Scores for PD patients and Controls in
ON and OFF Sessions. Figure 1A demonstrates learning scores for PD
patients and controls in ON and OFF sessions. Mean learning scores,
calculated as total number of items recalled on the final minus the first
study-immediate recall trial, for the RAVLT and AFTL combined, are
presented for PD and controls, in both sessions separately. For PD
patients, scores in the ON medication session appear in red whereas
those for the OFF session are presented in blue. Although control
participants did NOT receive dopaminergic therapy during any session
of the experiment, their data are presented here to correspond to the
ON-OFF order of the PD patient to whom they were matched. Error bars
represent standard errors about the mean (SEM). Figure 1B demon-
strates recall performance for PD patients and controls in ON and OFF
sessions. Mean number of items recalled after delay for Lists A and B on

the RAVLT and AFLT combined, are presented for PD and control
participants, separated by session. For PD patients, scores in the ON
session appear in red whereas those for the OFF session are presented
in blue. Although control participants did NOT receive dopaminergic
therapy during any session of the experiment, their data are presented
here to correspond to the ON-OFF order of the PD patient to whom
they were matched. Error bars represent SEM. Figure 1C demonstrates
recognition memory performance for PD patients and controls in ON
and OFF sessions. Mean d’ scores for List A and B items, recognized
from newly-presented items after delay, for the RAVLT and AFLT
combined, are presented for PD and control participants, separately for
each session. For PD patients, scores in the ON session appear in red
whereas those for the OFF session are presented in blue. Although
control participants did NOT receive dopaminergic therapy during any
session of the experiment, their data are presented here to correspond
to the ON-OFF order of the PD patient to whom they were matched.
Error bars represent SEM.
doi:10.1371/journal.pone.0074044.g001
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controls. The effect of Test type and the Group 6 Test type

interactions in both sessions were not significant, all F,1.

4. Summary. Off medication, learning scores were compa-

rable for PD patients and control participants. On medication, PD

patients’ learning was impaired relative to that of controls. In

contrast, off medication, PD patients’ recall and recognition

memory was significantly poorer than that of controls. On

medication, PD patients’ and control participants’ recall was

equivalent, and there was only a trend toward poorer recognition

in PD patients compared to controls.

Encoding and Retrieval within Groups
1. PD Group. On PD patients’ normalized learning, recall,

and recognition scores, we performed a 36262 ANOVA, with

Experimental phase (Learning vs. Delayed Recall vs. Recognition),

Test type (Verbal/RAVLT vs. Non-verbal/AFLT), and Session

(ON vs. OFF medication) as within-subject variables. Only the

Experimental phase6Session interaction was significant, F (2, 56)

= 3.99, MSe =0.47, p,0.025. All other interactions and main

effects were not significant, all F,1.

To better understand the Experimental phase 6 Session

interaction, we examined the effect of Session on the measures

expected to index encoding and those intended to stress retrieval,

separately. First, we performed a 262 ANOVA on the normalized

learning scores with Test type (Verbal/RAVLT vs. Non-verbal/

AFLT) and Session (ON vs. OFF medication) as within-subject

variables. The main effect of Session did not reach significance, F

(1, 28) = 2.49, MSe =0.51, p=0.126. The main effect of Test type

and the Test type6 Session interaction were also not significant,

both F,1.

Next, we performed a 26262 ANOVA on the normalized

recall and recognition scores with Experimental phase (Recall vs.

Recognition), Test type (Verbal/RAVLT vs. Non-verbal/AFLT),

and Session (ON vs. OFF medication) as within-subject variables.

Only the main effect of Session was significant, F (1, 28) = 8.46,

MSe =0.30, p,0.005, reflecting poorer recall and recognition

memory scores off relative to on medication. The main effects of

Experimental Phase, Test type, and all interactions were not

significant, all F,1.

2. Control Group. Analogous ANOVAS were performed on

control participants’ normalized learning, recall, and recognition

performance scores. Again, control participants did not take

dopaminergic medication at any point in this study. However,

their data were analyzed to parallel the ON and OFF session of

the PD patient to whom they were matched. The 36262

ANOVA, with Experimental phase (Learning vs. Delayed Recall

vs. Recognition), Test type (Verbal/RAVLT vs. Non-verbal/

AFLT), and Session (ON vs. OFF medication) as within-subject

variables, revealed no significant main or interaction effects, all

F,1.

To mirror the analyses performed on PD patients’ data, we also

examined the effect of Session on the measures expected to index

Table 2. Learning in the RAVLT and AFLT for PD and control participants in both experimental sessions.

PD Control

First trial Final Learning scores First trial Final trial Learning scores

RAVLT ON 5.48 (0.32) 9.00 (0.47) 3.52 (0.43) 6.33 (0.50) 10.70 (0.45) 4.37 (0.37)

RAVLT OFF 5.14 (0.34) 9.03 (0.44) 3.90 (0.35) 6.66 (0.54) 10.59 (0.44) 3.93 (0.47)

AFLT ON 2.31 (0.31) 7.80 (0.58) 5.48 (0.44) 2.79 (0.31) 9.33 (0.66) 6.59 (0.47)

AFLT OFF 1.90 (0.25) 8.01 (0.63) 6.10 (0.54) 3.04 (0.35) 9.41 (0.64) 6.37 (0.54)

Mean number of items recalled (SEM) on the first and final immediate-recall trials in the RAVLT and AFLT are presented separately for PD and control participants in the
ON and OFF medication Sessions. Learning scores, calculated as total number of items recalled on the final minus the first study-immediate recall trial, also appear.
Scores for control participants are also displayed according to the ON-OFF order of the PD patients to whom they were matched even though no healthy controls were
treated with dopaminergic medication at any time.
doi:10.1371/journal.pone.0074044.t002

Table 3. Measures of long-term memory on the RAVLT and AFLT, for PD patients and controls, in both experimental sessions.

PD Control

Recall after delay d’ Recall after delay d’

RAVLT List A ON 6.241 (0.513) 2.171 (0.118) 7.815 (0.602) 2.473 (0.172)

List A OFF 5.931 (0.446) 2.09 (0.136) 7.889 (0.545) 2.592 (0.149)

List B ON 1.31 (0.217) 1.124 (0.113) 2.148 (0.482) 1.453 (0.172)

List B OFF 1.31 (0.244) 0.89 (0.103) 1.778 (0.46) 1.487 (0.155)

AFLT List A ON 8.379 (0.609) 2.327 (0.118) 9.074 (0.654) 2.381 (0.124)

List A OFF 7.862 (0.65) 2.256 (0.118) 9.222 (0.731) 2.606 (0.121)

List B ON 1.586 (0.327) 1.249 (0.149) 1.63 (0.321) 1.646 (0.145)

List B OFF 0.897 (0.224) 1.069 (0.152) 1.556 (0.33) 1.613 (0.144)

The mean number of items recalled out of a total of 15 for Lists A and B after delay, along with the mean d’ scores, reflecting sensitivity of old-new discriminations for
Lists A and B on both the RAVLT and AFLT are presented. Scores for PD patients appear separately for ON and OFF medication sessions. Control participants’ data are
displayed to correspond to the ON-OFF order of the PD patient to whom they were matched, although they were not treated with dopaminergic medication at any
time.
doi:10.1371/journal.pone.0074044.t003
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encoding and to stress retrieval separately for control participants.

The 262 ANOVA on the normalized learning scores with Test

type (Verbal/RAVLT vs. Non-verbal/AFLT) and Session (ON vs.

OFF medication) as within-subject variables and the 26262

ANOVA on the normalized recall and recognition scores with

Experimental phase (Recall vs. Recognition), Test type (Verbal/

RAVLT vs. Non-verbal/AFLT), and Session (ON vs. OFF

medication) as within-subject variables, both uncovered no

significant main or interaction effects, all F,1.

3. Summary. For PD patients, differences in learning

performance related to dopaminergic medication status, did not

reach significance. However, dopaminergic medication signifi-

cantly improved retrieval as assessed by delayed recall and

recognition memory performance. There were no significant

differences between ON-OFF sessions for control participants.

Discussion

Off medication, PD patients performed comparably to controls

on a measure that indexed encoding (i.e., standardized learning

difference score) but more poorly on indices that preferentially

reflected retrieval processes (i.e., standardized recall and recogni-

tion after delay). On dopamine replacement medication, learning

rate was poorer for PD patients compared to controls. In contrast,

delayed recall and recognition memory performance was im-

proved by dopamine replacement medication. This pattern of

findings arose with both verbal and non-verbal test materials. This

constitutes the first study to show dissimilar effects of dopaminergic

medication on different aspects of memory.

Most previous investigations of memory have tested PD patients

on medication only. Our findings caution that these results

represent the summed effects, in unknown proportions, of some

deficient and other spared baseline memory processes, as well as

medication-induced improvements in some operations and

impairments in others. The resulting confounded estimate of

memory performance is expected to vary across experiments with

even small methodological changes, if the contributions of

encoding and retrieval are differentially emphasized, potentially

accounting for the inconsistency of the PD memory literature

[9,12,37]. Two previous studies investigated recognition memory

both on and off medication in PD but did not attempt to dissociate

encoding and retrieval processes [10,24]. Bronnick and colleagues

[11] did test learning and retrieval independently but they only

examined medication-naive PD patients. At odds with our results,

they found impaired rate of learning for PD patients relative to

controls off medication. The reason for this discrepancy is not

entirely clear, given that we employed similar methodology.

Because we tested performance both off and on medication,

however, and observed dissociated effects of PD and medication

on learning rate versus later recall and recognition, we directly

refute their conclusion that in PD, previously-demonstrated

memory impairments are attributable to encoding deficiencies.

Specifically, we found that retrieval deficits were maximal in the

session where learning rate was equivalent for PD patients and

controls (i.e., in the OFF session). Conversely, retrieval perfor-

mance was improved in the ON session, in which learning rate

was impaired for PD patients relative to controls. Our study

constitutes the first systematic investigation of encoding and

retrieval in PD, and of the differential effect of dopamine

replacement on these separate processes.

Interpretation of Findings Related to Encoding
Functions that are normal off medication and worsened by

dopaminergic therapy in PD have been shown previously to

depend upon VTA-innervated brain regions [5,38,39]. The VTA

is relatively spared in PD, especially early in disease, and its

efferent brain regions are adequately supplied with dopamine off

medication [1]. It is hypothesized that these brain regions are

overdosed by dopamine-replacement levels that are therapeutic for

dorsal striatum-mediated motor symptoms [40]. Combining

neuroimaging and behavioural tests in PD patients on and off

medication, this overdose theory has been supported empirically.

Dopaminergic medication-related decreases have been observed in

ventral striatum [5,38], in ventromedial prefrontal cortex and

posterior insula [39], as well as in orbitofrontal cortex [38]. VTA-

innervated hippocampus, that is known to be critical for explicit

memory encoding, might also be overdosed by dopaminergic

therapy in PD, potentially accounting for our findings. This would

be in keeping with observed regulation of hippocampal-ventral

striatum-globus pallidus-mediated learning by VTA in healthy

participants [41,42].

That PD patients learned lists of words and abstract images more

poorly than controls on dopaminergic medication, but equivalently

at baseline, seems to contradict a larger literature suggesting that

dopamine improves learning in non-human animals [43,44] and

in healthy human participants [45,46]. The current experiment

differs from many of these experiments in a few important

respects. These differences and how they might account for

apparent discrepancies with respect to dopamine’s effects on

learning and memory will be discussed in the paragraphs that

follow.

First, typical learning paradigms confound learning and

performance. Proficiency of learning motor acts or skills, or of

encoding associations between stimuli and rewards, and between

stimuli and responses, is usually confirmed by asking participants

to perform the trained actions or enact decisions referring to the

learned associations. If dopamine improves skill performance or

decision making, this can simulate improved learning. Atallah and

colleagues elegantly demonstrated this fact in testing the hypoth-

esis that the dorsal striatum mediates stimulus-response and

response-reward association learning [47]. They sought to

distinguish learning these relations from performing appropriate

response selections based on what was learned. In awake and

ambulatory rats, first they compared the effect on performance in

the training session of infusing the dorsal striatum with a) a

gamma-aminobutyric acid (GABA) agonist in one group –

expected to have inhibitory effects, and b) saline in another –

expected to have no effect on dorsal striatum function. They found

that GABA infusions to dorsal striatum impaired rats’ ability to

consistently select a rewarded relative to an unrewarded arm in a

y-maze task on the basis of odour cues during the training session.

This seemed to suggest that inhibiting dorsal striatum function

impaired learning relations. However, when they stopped the

GABA and saline infusions during a later test phase, animals in the

experimental group performed equivalently to control animals.

This revealed that stimulus-response and stimulus-reward associ-

ations had been learned equally well during the training session for

both groups, but suppressing dorsal striatum function had

interfered with enactment of correct responses. Conversely, and

to drive home the point, in another experiment, when GABA

agonist versus saline infusions to the dorsal striatum were instituted

at test only, performance became impaired for the GABA group

relative to the saline group despite identical learning for both

groups during training.

A closer examination of a representative investigation of the

effect of dopamine on learning in healthy human participants

seems to echo the results of Atallah and colleagues [47]. Knecht

and colleagues [45] investigated the effect of one Levodopa/
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Carbidopa 100/25 mg tablet per day on implicit learning in

healthy adults. Participants learned to implicitly associate audito-

rily-presented pseudowords with object drawings, through trial

and error with feedback. They performed 400 learning-feedback

trials per day over five days. On Day 1 (i.e., over the course of 400

trials), there was no difference in the percentage of correct

pseudoword-drawing pairs learned by participants receiving

Levodopa versus placebo. In fact, significant differences between

groups were not evident until the end of Day 2 (i.e., at 800 trials),

when learning exceeded 70% correct. If dopamine’s role is to

facilitate learning, maximal effects would be expected during the

steepest part of the learning curve (i.e., over Days 1 and 2). In this

study, however, the effect of dopamine was greatest when learning

had reached a plateau and performance accuracy ranged between

80–90%. This pattern of findings seems more consistent with

Levodopa-mediated improvement in retrieval of pseudoword-

drawing associations than on learning these associations per se.

This revised interpretation of these results is entirely consistent

with our findings in PD patients that dopamine-replacement

medication improves retrieval.

In the current experiment, we aimed to distinguish encoding of

verbal and non-verbal materials from other influences on memory

performance. The RAVLT and AFLT methodology, with

repeated study-immediate recall events that use the same stimuli

across trials, permits a less confounded estimate of encoding

processes. Performance on each study-immediate recall trial

reflects the combined influences of word or figure encoding and

retrieval from long-term memory, as well as immediate or working

memory processes. However, the number of items transferred to

long-term memory is expected to systematically increase across

study-immediate recall trials with less clearly predictable effects on

other processes. Consequently, subtracting performance in the

final from the first stimulus-recall trial provides a less confounded

estimate of encoding or learning [31–33,48–51]. Attempting to

isolate encoding from other influences on memory is particularly

important given that immediate or working memory processes

have been shown to improve with dopaminergic medication in PD

[52–60] and in healthy young adults [61–66].

Dosages of dopaminergic medications in our study and those

investigating dopamine’s effect on learning in healthy adults differ

greatly. This is another potentially important difference. In the

current study, the average daily Levodopa equivalent was 520 mg

compared to 100 mg in the study performed by Knecht and

colleagues [45]. PD patients are also arguably more susceptible to

overdose effects from exogenous dopaminergic medications

because dopamine-producing neurons also regulate synaptic

dopamine [67]. As these cells are lost in PD, so is dopamine

buffering capacity.

Although our result of poorer learning for PD patients on

dopaminergic medication relative to healthy control participants

might on the surface seem at odds with findings in non-human

animals and healthy human participants, it is entirely in keeping

with findings in PD. Our results, however, extend the learning

situations that are impaired by dopaminergic medication to

include intentional and explicit encoding of word and image lists.

That is, in PD, learning is the function most frequently worsened

by dopamine replacement therapy [68–73]. A number of studies

have revealed deficits related to dopamine replacement medica-

tions in probabilistic associative learning in PD patients who

perform equivalently to controls off medication [69,72,74].

Shohamy and colleagues [71] found that dopaminergic medica-

tion impaired learning of an incrementally-acquired, concurrent

discrimination task, whereas off medication, PD patients per-

formed as well as controls. Sequence learning was reduced for PD

patients on medication [68,70,75,76]. Dopamine supplementation

yielded reduced facilitation for consecutive, consistent stimulus-

stimulus pairings in a selection task compared to normal

facilitation when PD patients were tested off medication [4].

Once stimulus-reward associations have been learned, reversing

these associations is also performed more poorly for PD patients

on dopamine replacement therapy [6,77–83]. Dopamine therapy

has been shown to impair learning from negative feedback [84].

Finally, there are a number of studies with healthy adults in

which dopaminergic therapy has led to diminished learning.

Breitenstein and colleagues [85] found that administering a

dopamine agonist significantly impaired novel word learning in

healthy volunteers compared to placebo. Similarly, Pizzagalli and

colleagues [86] and Santesso and colleagues [87] found that

reward learning was impaired in healthy adults after pramipexole

was administered.

Interpretation of Findings Related to Retrieval
The SN, which is significantly degenerated at even the earliest

stages of clinical PD, has dopamine projections nearly exclusively

to the dorsal striatum. Hence, the pattern of baseline deficits in

early PD that are remediated by dopamine supplementation in PD

is the signature of a dorsal striatum-mediated process. In our

study, PD patients were impaired at baseline but improved with

dopamine replacement on all measures that stressed retrieval, even

though encoding was impaired in PD patients relative to control in

the on session. Our results are consistent with a role for dorsal

striatum in retrieval. A review of the literature reveals evidence in

line with these findings.

Surveying cognitive deficits in patients with dorsal striatum

lesions in fact reveals that the most common impairment is in

explicit memory [88–90]. In functional neuroimaging studies,

dorsal striatum is preferentially activated for learned relative to

random motor sequences [91], for familiar items in an episodic

recognition test [20], and while recalling recently-learned category

membership [92,93]. Unlike activity in ventral striatum that tracks

the progression of learning, dropping off as performance

asymptotes and hence learning plateaus [4,91,93], preferential

activation of the dorsal striatum in neuroimaging studies persists

well after sequences or categorization rules [93] have been

encoded. Together these findings suggest that although dorsal

striatum is implicated in explicit memory function, it does not

underlie learning or encoding processes. Based on our data, we

posit that it mediates retrieval of previously encoded information.

Conclusion

Increasingly, cognitive impairment is identified as a significant

cause of disability in PD [94]. The nature and pathophysiology of

cognitive deficits in PD are not fully understood. Enhanced

understanding of these impairments and the effect of dopamine

replacement therapy on cognition in PD is an important aim as it

will translate directly into improved clinical care. Here we show

that learning rate and retrieval processes are oppositely affected by

PD and dopaminergic medication. Whereas encoding rate is

spared at baseline in PD, successful retrieval from long-term

memory is impaired. On dopaminergic medications, PD patients

encoded both verbal and non-verbal information more poorly

than controls whereas dopamine replacement improved later

retrieval from long-term memory. These findings shed light on the

memory literature in PD and subsequent studies will aim to better

understand the brain regions that mediate these findings. More

specific understanding of memory impairments in PD might guide
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clinicians to consider a broader range of symptoms and tailor

medication strategies to specific patient complaints and priorities.

Supporting Information

Appendix S1 Word list and images used in tests of
explicit memory. Appendix S1A contains all words used in the
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example images used in the Aggie Figures Learning Test (AFLT).
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